

Fig. 2. Stereoscopic view of the cation  $[IrO_2{P(CH_3)_2C_6H_5}_4]^+$ .

Nolte, M. J. & Singleton, E. (1975). Acta Cryst. B31, 2223–2227.

Nolte, M. J. & Singleton, E. (1976). Acta Cryst. B32, 1410-1413.

Nolte, M. J., Singleton, E. & Laing, M. (1975). J. Amer. Chem. Soc., 97, 6396–6400. NOLTE, M. J., SINGLETON, E. & LAING, M. (1976). J. Chem. Soc. Dalton. In the press.

STEWART, J. M., KRUGER, G. J., AMMON, H., DICKINSON, C. H. & HALL, S. R. (1972). The X-RAY system – version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ of Maryland, College Park, Maryland.

### Acta Cryst. (1976). B32, 1841

# Crystal and Molecular Structure of the *p*-Bromobenzenesulphonate Derivative of the Complex Tetranortriterpenoid Prieurianin, C<sub>44</sub>H<sub>53</sub>O<sub>18</sub>SBr

By A. Forbes CAMERON AND FERGUS D. DUNCANSON Department of Chemistry, University of Glasgow, Glasgow G128QQ, Scotland

(Received 3 December 1975; accepted 31 December 1975)

The structure of the title compound has been determined from 1926 independent reflexions collected on a diffractometer. The crystals are orthorhombic, space group  $P2_12_12_1$ , with Z=4,  $a=11\cdot339$ ,  $b=16\cdot371$ ,  $c=27\cdot737$  Å. The structure was solved by a combination of the heavy-atom and direct-phasing techniques, and has been refined by least squares to a final R of 0.096.

### Introduction

Prieurianin, a complex tetranortriterpenoid, was first isolated in 1965 by light petroleum extraction of the timber of Trichilia prieuriana (Meliaceae) (Bevan, Ekong & Taylor, 1965). However, until recently the structure has remained obscure since conventional spectroscopic studies, although indicating the presence of several of the functional groups, gave little information about the overall chemical constitution. Accordingly, we undertook an X-ray analysis of the p-bromobenzenesulphonate derivative of prieurianin (I) concurrently with a thorough spectroscopic analysis, which included <sup>13</sup>C NMR studies at elevated temperature with the more advanced techniques of proton-noise and continuous-wave decoupling, and <sup>1</sup>H NMR studies at a range of elevated and sub-ambient temperatures. Both the spectroscopic and crystallographic approaches independently led to correct elucidations of the molecular structure, and in addition the latter study also resolved several stereochemical ambiguities which remained from the spectroscopic studies (Gullo et al., 1975). We describe here the details of the X-ray analysis; full accounts of the spectroscopic and chemical studies will be published elsewhere.



# Experimental

Crystal data Prieurianin p-bromobenzenesulphonate (solvated).  $C_{44}H_{53}O_{18}SBr.(CH_2Cl_2)_{3/4}, M = 981\cdot8$  (excluding solvent). Orthorhombic,  $a = 11\cdot339, b = 16\cdot371, c = 27\cdot737$  Å,  $U = 4963\cdot2$  Å<sup>3</sup>,  $D_m = 1\cdot36$  g cm<sup>-3</sup>,  $Z = 4, D_c = 1\cdot31$  g cm<sup>-3</sup> (excluding solvent), F(000) = 2174. Space group  $P2_12_12_1$ . Mo Ka radiation,  $\lambda = 0.7107$  Å,  $\mu$ (Mo K)  $= 10\cdot2$  cm<sup>-1</sup>.

# Crystallographic measurements

The cell parameters, initially determined photographically, were refined by least squares prior to the diffractometer data collections. Two sets of intensities were measured. Initially, a small crystal was exposed to Ni-filtered Cu  $K\alpha$  radiation on a Hilger and Watts Y290 diffractometer, and with the  $2\theta$ ,  $\omega$ -scan technique in the range  $2\theta \ 0 \rightarrow 114^\circ$ , the intensities of 3036 independent reflexions  $[I > 2\sigma_I, \sigma_I = \sqrt{(I + B_1 + B_2)}]$  were measured. This set of data proved sufficient to allow solution (with difficulty) of the structure, but did not permit satisfactory refinement. This effect was eventually traced to an electronic fault in the counting chain of the diffractometer, which had produced random and otherwise undetectable errors in the intensity measurements. Accordingly, the same crystal was exposed to graphite-monochromated Mo radiation, and with the same data-collecting technique in the range  $2\theta \to 50^\circ$ , the intensities of 1926 independent reflexions  $(I > 3\sigma_i)$  were remeasured. The structure was refined from the latter set of data. All intensities were corrected with Lorentz and polarization factors, but not for absorption.

# Structure determination

The structure of prieurianin was solved from the initial set of diffraction data. Many of the difficulties experienced probably resulted directly from unsuspected failings in the data. Attempts to solve the structure by the heavy-atom technique met with only limited success. Inspection of a sharpened Patterson function yielded a convincing Br position, but no S position, and subsequent structure factor and electron density calculations rapidly ceased to yield improved structural information. Accordingly, attempts were made to solve the structure by direct-phasing techniques. With a starting set of five reflexions chosen to give rapid phase expansion, phases were calculated and refined by reiteration by the tangent-formula procedure with 432 reflexions of  $|E| \ge 1.35$ . A subsequent E map indicated the presence of the heavy atom in the same location as that indicated by the Patterson function, and also indicated some skeletal fragments although the resolution was poor.

Concurrently with the above approach, a tangentformula refinement of the phases appropriate to the heavy-atom position was carried out, in which a starting set of 280 reflexions ( $|E| \ge 1.50$ ) was used to derive the phases for 381 reflexions with  $|E| \ge 1.40$ . The resulting *E* map agreed closely with that obtained above, showing fewer peaks, but with only slightly improved resolution. However, comparison of the two *E* maps allowed the selection of a number of atomic sites, which were used to initiate several cycles of structure factor and electron density calculations culminating in the eventual solution of the complete structure.

# Structure refinement

Refinement of the structure by least squares converged when R was 0.096 and  $R^1 (= \sum w \Delta^2 / \sum w |F_o|^2)$  was 0.015. Details of the refinement are given in Table 1. It was at this stage of the analysis that the short-comings of the original intensities were fully realized. An immediate improvement was obtained on substituting the new set of data, which additionally allowed identification of a molecule of methylene chloride



Fig. 1. A view of one molecule with the internal hydrogen bond shown by the broken line.

| Table  | 1. | Course | of refinemen | 1t |
|--------|----|--------|--------------|----|
| I UDIC |    | Comse  |              |    |

| Cycles | Parameters refined                                                                                         | Final R | Final R' |
|--------|------------------------------------------------------------------------------------------------------------|---------|----------|
| 1      | $x, y, z, U_{av}$ , scale factor. Unit weights                                                             | 0.276   | 0.075    |
| 2-5    | $x, y, z, U_{iso}$ , scale factor. Unit weights                                                            | 0.195   | 0.039    |
| 6-7    | $x, y, z, U_{iso}$ ( $U_{ii}$ for Br), scale factor. Unit weights                                          | 0.178   | 0.034    |
| 8-12   | x, y, z, $U_{iso}$ ( $U_{ij}$ for Br), scale factor. Unit weights. New data set, with Mo Ka radiation      | 0.125   | 0.022    |
| 13-17  | $x, y, z, U_{iso}$ ( $U_{ij}$ for Br), scale factor. Unit weights. Solvent molecule included and refined v | vith    |          |
|        | overall population parameter                                                                               | 0.108   | 0.013    |
| 18-19  | $x, y, z, U_{ise}$ ( $U_{ii}$ for Br), scale factor. Unit weights. Solvent molecule included. Coordinates  |         |          |
|        | inverted to give correct enantiomorph                                                                      | 0.098   | 0.011    |
| 20-23  | $x, y, z, U_{iso}$ ( $U_{ij}$ for Br), scale factor. Weighting scheme applied. Solvent molecule included   | 0.096   | 0.012    |

partially present in the structure. This was included in the refinement with adjustment of an overall fractional population parameter, the final value of which was 0.74. In the final cycles of refinement, a weighting scheme of the form:

$$w = [A + B|F_o| + C|F_o|^2]^{-1}$$

was applied with coefficients A = 8.349, B = 0.4737, C = 0.0013.

Fractional coordinates and thermal parameters are listed in Table 2, while Table 3 contains molecular dimensions and pertinent non-bonded contacts. Estimated standard deviations quoted in Tables 2 and 3 are derived from the least-squares calculations, and should be regarded as minimum values. Details of some least-squares planes through various portions of the molecular framework are given in Table 4. Fig. 1 shows a view of one molecule and the atomic numbering.\*

\* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31590 (17 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH11NZ, England.

Table 2. Fractional coordinates and isotropic thermal parameters  $(Å^2)$ 

|                 | x           | У            | z           | $U_{iso}$ |
|-----------------|-------------|--------------|-------------|-----------|
| Br              | 0.5559(3)   | 0.1624(2)    | 0.3891(1)   | _         |
| S               | 0.4787(5)   | 0.3368(4)    | 0.6000(2)   | 0.068(2)  |
| O(1)            | 0.5106(16)  | 0.2830(10)   | 0.6401 (6)  | 0.085 (5) |
| $\tilde{O}(2)$  | 0.3717(16)  | 0.3785(11)   | 0.5995(11)  | 0.089(5)  |
| <u>Õ</u> (3)    | 0.5839(12)  | 0.4018(8)    | 0.6000 (5)  | 0.055(4)  |
| $\tilde{O}(4)$  | 0.4963(13)  | 0.5328(9)    | 0.6484(5)   | 0.065(4)  |
| õõ              | 0.5397(11)  | 0.6163(7)    | 0.5830(4)   | 0.046(3)  |
| ŌĞ              | 0.2536(17)  | 0.4778(11)   | 0.5156(7)   | 0.091 (5) |
| O(7)            | 0.2092(14)  | 0.8982 (10)  | 0.5671 (6)  | 0.072(5)  |
| <b>O</b> (8)    | 0.3132(11)  | 0.7879 (8)   | 0.6501 (4)  | 0.044(3)  |
| 0(9)            | 0.6827(12)  | 0.7017(8)    | 0.6478 (5)  | 0.050 (4) |
| O(10)           | 0.8343 (16) | 0.7377 (11)  | 0.5948 (7)  | 0.086 (5) |
| OÌIÍ            | 0.6494(14)  | 1.0265 (9)   | 0.7501 (5)  | 0.063 (4) |
| O(12)           | 0.8017 (20) | 1.0014 (13)  | 0·7993 (8)  | 0.113 (7) |
| O(13)           | 0.2468 (14) | 0·9190 (9)   | 0.7085 (6)  | 0.064 (4) |
| O(14)           | 0.2408 (15) | 0·9680 (9)   | 0.7861 (6)  | 0·068 (4) |
| O(15)           | 0.4082 (14) | 1.0817 (9)   | 0.6736 (6)  | 0·068 (4) |
| <b>O</b> (16)   | 0.2825 (21) | 1.1574 (14)  | 0.7158 (9)  | 0·127 (8) |
| O(17)           | 0·7816 (13) | 0·8833 (8) ́ | 0.6844 (5)  | 0·058 (4) |
| O(18)           | 0.9292 (19) | 0.8087 (12)  | 0.7189 (7)  | 0.106 (6) |
| $\mathbf{C}(1)$ | 0.6984 (17) | 0.8411(12)   | 0.7190 (7)  | 0.045 (5) |
| C(2)            | 0.7101 (21) | 0.8803 (14)  | 0.7716 (8)  | 0.060 (6) |
| C(3)            | 0.7193 (27) | 0.9714(18)   | 0.7740 (10) | 0.083 (8) |
| C(4)            | 0.5706 (19) | 1.0092 (12)  | 0.7082 (8)  | 0.050 (5) |
| C(5)            | 0.5013 (17) | 0.9277 (12)  | 0.7084(7)   | 0.045(5)  |
| C(6)            | 0.4295 (17) | 0.9230 (12)  | 0.7584(7)   | 0.043(5)  |
| C(7)            | 0.2944 (19) | 0.9350 (13)  | 0.7464 (8)  | 0.051 (6) |
| C(8)            | 0.4634 (17) | 0.8649 (11)  | 0.6050 (7)  | 0.044(5)  |
| C(9)            | 0.5738 (16) | 0.8364 (11)  | 0.6372 (6)  | 0.034 (4) |
| C(10)           | 0.5680 (17) | 0.8442 (11)  | 0.6971 (6)  | 0.037 (5) |
| C(11)           | 0.5995 (15) | 0.7447 (10)  | 0.6157 (6)  | 0.033 (4) |
| C(12)           | 0.4932 (15) | 0.6871 (10)  | 0.6098 (6)  | 0.031 (4) |
| C(13)           | 0·4010 (16) | 0.7262 (11)  | 0.5756 (7)  | 0.035 (5) |
| C(14)           | 0·3619 (17) | 0.8074 (11)  | 0.6025 (7)  | 0.043 (5) |
| C(15)           | 0.2440 (20) | 0.8283 (14)  | 0.5732 (8)  | 0.058 (6) |
| C(16)           | 0.1929 (20) | 0.7508 (14)  | 0.5578 (8)  | 0.057 (6) |
| C(17)           | 0.2794 (18) | 0.6844 (12)  | 0.5747 (7)  | 0.051 (5) |
| C(18)           | 0.4457 (18) | 0.7481 (11)  | 0.5239 (6)  | 0.040 (5) |
| C(19)           | 0.5128 (17) | 0.7710 (11)  | 0.7210 (7)  | 0.042 (5) |
| C(20)           | 0.2750 (19) | 0.6100(12)   | 0.5389 (7)  | 0.049(5)  |

|              | Table 2 (cont.) |             |             |               |  |  |  |
|--------------|-----------------|-------------|-------------|---------------|--|--|--|
|              | x               | У           | Z           | $U_{\rm iso}$ |  |  |  |
| C(21)        | 0.2511 (23)     | 0.5324(15)  | 0.5548 (9)  | 0.067 (7)     |  |  |  |
| C(22)        | 0.2882 (20)     | 0.6063 (14) | 0.4862 (8)  | 0.060 (6)     |  |  |  |
| C(23)        | 0.2736 (27)     | 0.5227 (18) | 0.4739 (10) | 0.090 (9)     |  |  |  |
| C(24)        | 0.8012 (22)     | 0.6998 (16) | 0.6320 (9)  | 0.072 (7)     |  |  |  |
| C(25)        | 0.1107 (26)     | 0.9815 (17) | 0.7800 (10) | 0.086 (9)     |  |  |  |
| C(26)        | 0.9030 (24)     | 0.8602 (16) | 0.6884 (10) | 0.080 (8)     |  |  |  |
| C(27)        | 0.9731 (23)     | 0.9061 (15) | 0.6519 (9)  | 0.077 (7)     |  |  |  |
| C(28)        | 0.6424(19)      | 1.0305 (13) | 0.6595 (8)  | 0.053 (6)     |  |  |  |
| C(29)        | 0.4844(22)      | 1.0816 (14) | 0.7176 (9)  | 0·070 (7)     |  |  |  |
| C(30)        | 0.4744 (19)     | 0.9295 (13) | 0.5750 (8)  | 0.054 (6)     |  |  |  |
| C(31)        | 0.3036 (24)     | 1.1222 (16) | 0.6768 (10) | 0·076 (8)     |  |  |  |
| C(32)        | 0.2389 (29)     | 1.1211 (19) | 0·6283 (11) | 0.107 (10)    |  |  |  |
| C(33)        | 0.5362(17)      | 0.5437 (11) | 0.6057 (7)  | 0.045 (5)     |  |  |  |
| C(34)        | 0.5745 (17)     | 0.4757 (11) | 0.5711 (7)  | 0·044 (̀5́)   |  |  |  |
| C(35)        | 0.7004 (19)     | 0.4951 (14) | 0.5457 (8)  | 0.060 (6)     |  |  |  |
| C(36)        | 0.7291 (23)     | 0.4295 (16) | 0.5086 (9)  | 0.081(7)      |  |  |  |
| C(37)        | 0.7910 (20)     | 0.4988 (14) | 0.5862 (8)  | 0.062(6)      |  |  |  |
| C(38)        | 0.9145 (24)     | 0.5302 (16) | 0.5651 (9)  | 0.083 (8)     |  |  |  |
| C(39)        | 0.4977 (19)     | 0.2858 (13) | 0.5421 (8)  | 0.056 (6)     |  |  |  |
| C(40)        | 0.5743 (25)     | 0.2214 (17) | 0.5405 (10) | 0.087 (8)     |  |  |  |
| C(41)        | 0.5920 (27)     | 0.1848 (19) | 0.4918 (11) | 0.101 (10)    |  |  |  |
| C(42)        | 0.5304 (23)     | 0.2117 (16) | 0.4515 (9)  | 0.075 (7)     |  |  |  |
| C(43)        | 0.4429 (25)     | 0.2748 (17) | 0.4540 (10) | 0.087 (8)     |  |  |  |
| C(44)        | 0.4255 (22)     | 0.3138 (15) | 0.5018 (9)  | 0.074 (7)     |  |  |  |
| C(45)        | 0.6460 (50)     | 0.8002 (33) | 0.2313 (19) | 0.144 (18)    |  |  |  |
| <b>Cl(1)</b> | 0.7305 (12)     | 0.7514 (8)  | 0.1936 (4)  | 0.127 (6)     |  |  |  |
| Cl(2)        | 0.5597 (21)     | 0.8675 (12) | 0.1936 (7)  | 0.216 (8)     |  |  |  |
|              |                 |             | a –         |               |  |  |  |

Anisotropic thermal parameters (Å<sup>2</sup>) for Br

| $U_{11}$ | 0.080 (2) | $U_{12}$ | -0.014(2)  |
|----------|-----------|----------|------------|
| $U_{22}$ | 0.088 (2) | $U_{13}$ | 0.026 (2)  |
| $U_{33}$ | 0.108 (3) | $U_{23}$ | -0.044 (2) |

# Table 3. Interatomic distances and angles

(a) Bonded distances (Å)

| C(1) - C(2)   | 1.55 (3) | C(8) - C(14)  | 1.49 (3) |
|---------------|----------|---------------|----------|
| C(1) - C(10)  | 1.59 (3) | C(8) C(30)    | 1.33 (3) |
| C(1) - O(17)  | 1.49 (2) | C(11) - C(12) | 1.54 (2) |
| C(2) - C(3)   | 1.50 (4) | C(11) - O(9)  | 1.46 (2) |
| C(3) - O(11)  | 1.36 (3) | C(12) - C(13) | 1.55 (2) |
| C(3) - O(12)  | 1.25 (4) | C(12) - O(5)  | 1.46(2)  |
| C(4) - O(11)  | 1.46 (3) | C(13) - C(14) | 1.58 (3) |
| C(4) - C(5)   | 1.55 (3) | C(13) - C(17) | 1.54(3)  |
| C(4) - C(28)  | 1.57 (3) | C(13) - C(18) | 1.52 (3) |
| C(4) - C(29)  | 1.56 (3) | C(14) - C(15) | 1.59 (3) |
| C(5) - C(6)   | 1.57 (3) | C(14) - O(8)  | 1.42(2)  |
| C(5) - C(10)  | 1.59 (3) | C(15) - C(16) | 1.45 (3) |
| C(6) - C(7)   | 1.58 (3) | C(15) - O(7)  | 1.22(3)  |
| C(7) - O(13)  | 1.18 (3) | C(16) - C(17) | 1.53 (3) |
| C(7) - O(14)  | 1.34 (3) | C(17) - C(20) | 1.55 (4) |
| O(14) - C(25) | 1.50 (3) | C(20) - C(21) | 1.37 (3) |
| C(10) - C(9)  | 1.61 (2) | C(20) - C(22) | 1.42 (3) |
| C(10) - C(19) | 1.49 (3) | C(22) - C(23) | 1.42 (4) |
| C(9) - C(8)   | 1.59 (3) | C(21) - O(6)  | 1.38 (3) |
| C(9) - C(11)  | 1.63 (2) | C(23) - O(6)  | 1.36 (3) |
| O(9)—C(24)    | 1.41 (3) | C(35) - C(36) | 1.50 (3) |
| O(10)-C(24)   | 1.23 (3) | C(35) - C(37) | 1.49 (3) |
| O(17)-C(26)   | 1.43 (3) | C(37) - C(38) | 1.60 (4) |
| O(18)-C(26)   | 1.21 (3) | SO(3)         | 1.60 (1) |
| C(26)-C(27)   | 1.47 (4) | SO(2)         | 1.39 (2) |
| C(29)–O(15)   | 1.46 (3) | SO(1)         | 1.43 (2) |
| O(15)-C(31)   | 1.36 (3) | SC(39)        | 1.77 (2) |
| O(16)-C(31)   | 1.22 (4) | C(39)-C(40)   | 1.37 (4) |
| C(31) - C(32) | 1.49 (4) | C(40) - C(41) | 1.45 (4) |
| O(5)C(33)     | 1.33 (2) | C(41) - C(42) | 1.36 (4) |
| O(4)—C(33)    | 1.24 (2) | C(42) - C(43) | 1.43 (4) |
| C(33) - C(34) | 1.51 (3) | C(43)–C(44)   | 1.44 (4) |
| C(34) - C(35) | 1.61 (3) | C(44) - C(39) | 1.43 (3) |
| C(34) - O(3)  | 1.44 (2) | BrC(42)       | 1.88 (3) |
| C(45) - Cl(1) | 1.60 (6) | C(45) - Cl(2) | 1.79 (6) |

# Table 3 (cont.)

| (b) Interbond angles (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} C(2) - C(1) - C(10) & 113 \cdot 6 & (16) & C(2) - C(1) - O(17) & 108 \cdot 4 & (16) & C(2) - C(1) - O(17) & 108 \cdot 4 & (16) & C(2) - C(2) - C(3) & 117 \cdot 2 & (19) & C(2) - C(3) - O(11) & 126 \cdot 9 & (20) & C(2) & C(3) - O(12) & 117 \cdot 7 & (25) & C(2) & O(11) - C(4) - O(12) & 115 \cdot 4 & (25) & C(2) & O(11) - C(4) - C(28) & 106 \cdot 0 & (16) & C(2) & O(11) - C(4) - C(28) & 106 \cdot 0 & (16) & C(2) & O(11) - C(4) - C(28) & 106 \cdot 0 & (16) & C(2) & O(11) - C(4) - C(28) & 106 \cdot 0 & (16) & C(2) & O(11) - C(4) - C(29) & 96 \cdot 5 & (15) & C(2) & O(14) - C(29) & 109 \cdot 7 & (17) & C(2) & C(5) - C(4) - C(29) & 109 \cdot 7 & (17) & C(2) & C(5) - C(4) - C(29) & 109 \cdot 7 & (17) & C(2) & C(5) - C(6) & 108 \cdot 0 & (16) & C(2) & C(4) - C(2) - C(2) & 109 \cdot 9 & (16) & C(2) & C(4) - C(5) - C(10) & 119 \cdot 9 & (16) & C(2) & C(6) - C(7) - O(13) & 126 \cdot 4 & (19) & C(2) & C(6) - C(7) - O(14) & 124 \cdot 3 & (20) & C(2) & C(7) - O(14) - C(25) & 114 \cdot 9 & (18) & C(14) - C(13) - C(18) & 109 \cdot 1 & (14) & C(17) - C(13) - C(18) & 108 \cdot 1 & (14) & C(17) - C(13) - C(18) & 108 \cdot 1 & (14) & C(17) - C(13) - C(18) & 109 \cdot 7 & (15) & O(13) - C(14) - C(15) & 101 \cdot 2 & (15) & O(2(13) - C(14) - C(15) & 101 \cdot 2 & (15) & O(2(13) - C(14) - C(16) & 109 \cdot 2 & (14) & C(13) - C(14) - C(16) & 109 \cdot 2 & (14) & C(13) - C(14) - C(16) & 109 \cdot 2 & (14) & C(13) - C(14) - C(16) & 109 \cdot 2 & (14) & C(13) - C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C(14) - C(16) & 109 \cdot 2 & (14) & C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{l} (5) - C(10) - C(1) & 1 \\ (5) - C(10) - C(9) & 1 \\ (5) - C(10) - C(9) & 1 \\ (1) - C(10) - C(19) & 1 \\ (1) - C(10) - C(19) & 1 \\ (1) - C(10) - C(19) & 1 \\ (10) - C(9) - C(1) & 1 \\ (10) - C(9) - C(1) & 1 \\ (10) - C(9) - C(11) & 1 \\ (8) - C(9) - C(11) & 1 \\ (9) - C(8) - C(14) & 1 \\ (9) - C(8) - C(10) & 1 \\ (14) - C(8) - C(30) & 1 \\ (14) - C(8) - C(30) & 1 \\ (14) - C(8) - C(30) & 1 \\ (12) - C(11) - O(12) & 1 \\ (12) - C(11) - O(9) & 1 \\ (11) - C(12) - C(13) & 1 \\ (11) - C(12) - C(13) & 1 \\ (11) - C(12) - C(13) & 1 \\ (12) - C(13) - C(17) & 1 \\ (12) - C(26) - O(27) & 1 \\ (17) - C(26) - C(27) & 1 \\ (18) - C(29) - O(15) & 1 \\ \end{array} $ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                       | $\begin{array}{c}C(14)-C(15)\\C(14)-O(8)\\ )-C(15)-O(16)\\C(15)-O(7)\\ )-C(15)-O(7)\\ )-C(15)-O(7)\\ )-C(16)-C(17)\\C(17)-C(20)\\C(20)-C(22)\\ )-C(20)-C(22)\\C(20)-C(22)\\ )-C(20)-C(22)\\ )-C(20)-C(22)\\C(20)-C(22)\\ )-C(20)-C(22)\\C(20)-C(22)\\C(20)-C(22)\\C(20)-C(22)\\C(20)-C(22)\\C(20)-C(22)\\C(20)-C(22)\\C(20)-C(22)\\C(20)-C(22)\\C(20)-C(20)\\C(20)-C(20)\\C(20)-C(20)\\C(20)-C(20)\\C(40)-C(41)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C(42)-C(42)\\C$                                                                                                                                                                                                                                                | $\begin{array}{c} 122 \cdot 5 (16) \\ 113 \cdot 6 (15) \\ 99 \cdot 4 (15) \\ 106 \cdot 7 (17) \\ 122 \cdot 7 (19) \\ 130 \cdot 6 (21) \\ 130 \cdot 6 (21) \\ 130 \cdot 6 (21) \\ 130 \cdot 3 (18) \\ 110 \cdot 3 (18) \\ 130 \cdot 1 (19) \\ 130 \cdot 1 (19) \\ 130 \cdot 1 (19) \\ 100 \cdot 9 (19) \\ 100 \cdot 9 (19) \\ 110 \cdot 7 (22) \\ 111 \cdot 2 (20) \\ 110 \cdot 7 (22) \\ 111 \cdot 2 (20) \\ 110 \cdot 7 (22) \\ 111 \cdot 2 (20) \\ 110 \cdot 7 (22) \\ 111 \cdot 2 (20) \\ 110 \cdot 7 (22) \\ 110 \cdot 7 (24) \\ 120 \cdot 5 (27) \\ 123 \cdot 7 (24) \\ \end{array}$ | $\begin{array}{l} C(29)-O(15)-C(31) 117.7 (18)\\ O(15)-C(31)-C(32) 111.6 (22)\\ O(15)-C(31)-C(32) 131.0 (27)\\ C(12)-O(5)-C(33) 113.1 (13)\\ O(5)-C(33)-C(34) 111.6 (16)\\ O(5)-C(33)-C(34) 114.6 (16)\\ O(5)-C(33)-C(34) 124.0 (17)\\ O(4)-C(33)-C(34) 124.1 (16)\\ C(33)-C(34)-C(35) 111.6 (16)\\ C(34)-C(35)-C(37) 108.1 (17)\\ C(36)-C(35)-C(37) 108.1 (17)\\ C(43)-C(44)-C(39) 106.7 (22)\\ C(44)-C(39)-C(40) 125.9 (22)\\ C(41)-C(42)-Br 117.1 (21)\\ C(43)-C(42)-Br 117.2 (18)\\ Cl(1)-C(45)-Cl(2) 106.3 (29)\\ \end{array}$ |
| (c) Selected intramolecular non-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onded distances (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $C(1) \cdots O(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9) $2.98$ (18) $2.67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C(19) \cdots O(8)$                                                                                                                                                                                                                                                                                                                        | 2.96<br>2.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $C(37) \cdots O(3)$<br>$C(40) \cdots O(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2·86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c} C(1) \cdots O(1) \\ C(2) \cdots O(1) \\ C(3) \cdots O(1) \\ C(5) \cdots O(1) \\ C(5) \cdots O(1) \\ C(5) \cdots O(1) \\ C(6) \cdots C(1) \\ C(6) \cdots O(1) \\ C(6) \cdots O(1) \\ C(6) \cdots O(1) \\ C(1) \cdots O(1) \\ C(11) \cdots O(1) \\ C(12) \cdots O(1) \\ C(18) \cdots O($ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} C(19) \cdots O(9) \\ C(24) \cdots C(26) \\ C(24) \cdots O(18) \\ C(25) \cdots O(13) \\ C(26) \cdots O(10) \\ C(28) \cdots C(30) \\ C(28) \cdots O(15) \\ C(28) \cdots O(17) \\ C(29) \cdots O(16) \\ C(30) \cdots O(7) \\ C(31) \cdots O(13) \\ C(34) \cdots O(2) \\ C(35) \cdots O(5) \\ C(36) \cdots O(3) \end{array}$ | 2·97<br>3·24<br>3·27<br>2·66<br>3·30<br>3·39<br>2·81<br>2·95<br>2·61<br>3·06<br>3·49<br>2·90<br>2·87<br>2·98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} C(40) \cdots O(1) \\ C(40) \cdots O(3) \\ C(44) \cdots O(2) \\ C(44) \cdots O(2) \\ C(44) \cdots O(3) \\ C(44) \cdots O(6) \\ S \cdots \cdots O(4) \\ O(2) \cdots O(6) \\ O(3) \cdots O(4) \\ O(2) \cdots O(6) \\ O(3) \cdots O(4) \\ O(5) \cdots O(9) \\ O(5) \cdots O(9) \\ O(7) \cdots O(8) \\ O(8) \cdots O(13) \\ O(9) \cdots O(17) \\ O(13) \cdots O(15) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-94<br>3-36<br>2-88<br>3-49<br>3-34<br>3-46<br>3-17<br>3-07<br>2-69<br>2-76<br>3-10<br>) 2-76<br>) 3-32<br>) 3-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (d) Selected intermolecular distan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nces (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                            | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D 0 (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{array}{c} O(1) \cdots O(\\ O(1) \cdots C(1)\\ C(27) \cdots O(\\ C(27) \cdots O(1)\\ O(12) \cdots C(1) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} O(11) \cdots O(4)^{11} \\ O(14) \cdots C(10)^{111} \\ O(16) \cdots C(35)^{111} \\ C(32) \cdots O(4)^{111} \\ C(36) \cdots O(4)^{111} \end{array}$                                                                                                                                                                        | 3·18<br>3·47<br>3·42<br>3·36<br>3·18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{Br} \cdots & \text{O}(2) \\ \text{C}(6) \cdots & \text{O}(6) \\ \text{C}(8) \cdots & \text{O}(7) \\ \text{C}(9) \cdots & \text{O}(7) \\ \text{O}(10) \cdots & \text{C}(22 \\ \text{O}(1) \cdots & \text{Cl}(1) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.65         1v       3.24         v       3.49         v       3.48         )v       3.42         yv1       3.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Roman numeral superscripts refer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r to the following e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | quivalent position                                                                                                                                                                                                                                                                                                                         | ns relative to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a molecule at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (x,y,z):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (i<br>(iii<br>(v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i) $x - 1 + y$<br>i) $1 - x + \frac{1}{2} + y$<br>i) $\frac{1}{2} + x + \frac{3}{2} - y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c}z\\\frac{3}{2}-z\\1-z\end{array}$ (iv<br>1-z (v                                                                                                                                                                                                                                                                           | i) $1+x$<br>i) $\frac{1}{2}+x$ $\frac{1}{2}$<br>i) $\frac{3}{2}-x$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{ccc} y & z \\ -y & 1-z \\ -y & \frac{1}{2}+z \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (e) Selected torsion angles (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                                                                                                                                                                                         | C(17) $C(16)$ $C(16)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(15) $C(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} C(40)-C\\ C(40)-C\\ C(40)-C\\ C(39)-S\\ SO\\ SO\\ O(3)C\\ O(3)C\\ C(34)-C\\ O(3)C\\ C(34)-C\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} C_{(3)} - S & O(1) \\ C_{(3)} - S & O(2) \\ C_{(3)} - C_{(3)} - C_{(3)} \\ - & O(3) - C_{(3)} \\ O(3) - C_{(3)} - C_{(3)} \\ O(3) - C_{(3)} - C_{(3)} \\ C_{(3)} - C_{(3)} - C_{(12)} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} -23 \\ -159 \\ 86 \\ 78 \\ -140 \\ 98 \\ 65 \\ -56 \\ 172 \\ 172 \\ 174 \end{array}$                                                                                                                                                                                                                                     | $C_{1}(1) - C_{1}(1) - C_{2}(1) - C_{2}(1) - C_{2}(1) - C_{1}(1) - C_{2}(1) $ | $\begin{array}{c} c_{13} - c_{14} \\ c_{214} - c_{13} \\ c_{214} - c_{8} \\ c_{217} - c_{20} \\ c_{20} - c_{22} \\ c_{10} - c_{19} \\ c_{10} - c_{19} \\ c_{10} - c_{10} \\ c_{10} - c_{11} \\ c_{11} - c_{13} \\ c_{23} - c_{22} \\ c_{20} - c_{11} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{r} -3 \\ 31 \\ 153 \\ -83 \\ -64 \\ 87 \\ 36 \\ -74 \\ 39 \\ -16 \\ 48 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

•

| C(33)-O(5)-C(12)-C(13)        | -125 | C(3) - C(2) - C(1) - C(10)    | - 81 |
|-------------------------------|------|-------------------------------|------|
| C(12)-C(13)-C(14)-C(8)        | 65   | C(2) - C(1) - C(10) - C(5)    | 40   |
| C(13) - C(14) - C(8) - C(9)   | - 64 | C(3) - C(2) - C(1) - O(17)    | 42   |
| C(14)-C(8)-C(9)-C(11)         | 50   | C(2) - C(1) - O(17) - C(26)   | 78   |
| C(30)-C(8)-C(9)-C(11)         | -118 | C(1) - O(17) - C(26) - C(27)  | 179  |
| C(8) - C(9) - C(11) - C(12)   | - 47 | C(19)-C(10)-C(5)-C(6)         | 25   |
| C(9) - C(11) - C(12) - C(13)  | 57   | C(10) - C(5) - C(6) - C(7)    | -118 |
| C(9) - C(11) - O(9) - C(24)   | - 99 | C(5) - C(6) - C(7) - O(14)    | -152 |
| C(11)-O(9)-C(24)-O(10)        | 5    | C(6) - C(7) - O(14) - C(25)   | -179 |
| C(11)-C(12)-C(13)-C(17)       | -168 | C(3) - O(11) - C(4) - C(29)   | 155  |
| C(12) - C(13) - C(17) - C(16) | 156  | O(11) - C(4) - C(29) - O(15)  | 171  |
| C(14) - C(13) - C(17) - C(16) | 45   | C(4) - C(29) - O(15) - C(31)  | 162  |
| C(13) - C(17) - C(16) - C(15) | -27  | C(29) - O(15) - C(31) - C(32) | 177  |
|                               | Mean | $e.s.d. = 2^{\circ}$ .        |      |

# Table 3 (cont.)

Table 4. Least-squares planes

- (a) Equations of planes
  - X, Y, and Z are orthogonal coordinates in Å. (i) 0.7168X + 0.6627Y - 0.2166Z + 3.9696 = 0(ii) 0.9818X - 0.1460Y + 0.1218Z + 3.3468 = 0(iii) -0.3939X + 0.5269Y + 0.7531Z + 17.5039 = 0(iv) -0.5115X - 0.0468Y + 0.8579Z + 11.0785 = 0
  - (v) 0.6038X 0.0180Y + 0.7969Z 11.8424 = 0
- (b) Deviations of atoms from planes (Å)

| (i)   | Br    | 0.06          | S     | 0.10    | O(1)         | -0.46   |
|-------|-------|---------------|-------|---------|--------------|---------|
|       | O(2)  | -0.31         | C(39) | 0.04*   | C(40)        | -0.03*  |
|       | C(41) | -0.00*        | C(42) | 0.02*   | C(43)        | -0.02*  |
|       | C(44) | -0.01*        |       |         |              |         |
| (ii)  | C(17) | 0.00          | C(20) | 0.01*   | C(21)        | -0.02*  |
|       | C(22) | 0.00*         | C(23) | - 0·01* | O(6)         | 0.01*   |
| (iii) | C(8)  | <b>0</b> ∙07* | C(9)  | -0.02*  | C(14)        | -0.02*  |
| • •   | C(30) | -0.03*        |       |         |              |         |
| (iv)  | C(13) | -0.78         | C(17) | -0.06   | C(14)        | 0.001*  |
|       | C(15) | -0.002*       | C(16) | 0.001*  | <b>O</b> (7) | 0.002*  |
| (v)   | C(1)  | 1.06          | C(4)  | 0.36    | C(5)         | -0.09   |
|       | C(10) | 0.63          | C(2)  | 0.003*  | C(3)         | -0.011* |
|       | O(11) | 0.004*        | O(12) | 0.004*  |              |         |

(c) Dihedral angles between planes

(i) and (ii)  $54\cdot5^{\circ}$ , (ii) and (iv)  $113\cdot0^{\circ}$ , (iii) and (iv)  $34\cdot7^{\circ}$ 

# Discussion

In view of the limited accuracy of the present analysis, resulting from a set of data which is small in relation to the number of atomic parameters, we limit our discussion to a brief mention of the salient features of the solid-state conformation.

Prieurianin p-bromobenzenesulphonate is characterized by a single-bond linkage between the lactone section of the molecule and the C and D ring portion, allowing the possibility of rotation of the lactone group about this bond. However, such rotation is likely to be

somewhat hindered both by steric interactions and by hydrogen bonding involving the C(14)  $\beta$ -hydroxyl group, evidence for the latter having been observed in the IR spectrum. The present analysis has revealed that this hydrogen bonding is intramolecular  $[O(8) \cdots O(13)]$ 2.76 Å]. However, the broadness of the solution NMR spectra at ambient temperatures indicates a range of environmental conditions in the molecule, which vanishes at elevated temperatures with a consequent sharpening of the spectra, presumably as the greater thermal motion produces a uniform time-averaged environment. Correspondingly, at reduced temperature the multiplicities of some peaks have been interpreted as showing the presence of several conformers differing in the rotation about C(9)-C(10) and/or the conformation of the lactone ring. Inspection of a model reveals that in addition to the observed hydrogen bonding, a rotation of ca 180° about C(9)-C(10) would place the C(1) acetyl group in a position suitable for hydrogen bonding with the C(14) hydroxyl function.

The conformation of the  $\varepsilon$ -lactone ring is best described as a boat, distorted by the presence of the planar lactone group and with C(2) and C(5) in apical positions. The chair conformation of ring C and the puckered conformation of ring D are both normal for triterpenoid systems, although in the present case the C(8) exocyclic methylene group and the C(15) carbonyl function must impart some additional restrictions.

#### References

- BEVAN, C. W. L., EKONG, D. E. U. & TAYLOR, D. A. H. (1965). Nature, Lond. 206, 1323–1325.
- GULLO, V. P., MIURA, I., NAKANISHI, K., CAMERON, A. F., CONNOLLY, J. D., DUNCANSON, F. D., HARDING, A. E., MCCRINDLE, R. & TAYLOR, D. A. H. (1975). Chem. Commun. pp. 345-346.

<sup>\*</sup> Denotes atom used to define plane.